Sekuensing DNA
Sains

Sekuensing DNA

Sekuensing DNA

Sekuensing DNA atau pengurutan DNA adalah proses atau teknik penentuan urutan basa nukleotida pada suatu molekul DNA. Urutan tersebut dikenal sebagai sekuens DNA, yang merupakan informasi paling mendasar suatu gen atau genom karena mengandung instruksi yang dibutuhkan untuk pembentukan tubuh makhluk hidup. Sekuensing DNA dapat dimanfaatkan untuk menentukan identitas maupun fungsi gen atau fragmen DNA lainnya. Hal ini dilakukan dengan cara membandingkan sekuens-nya dengan sekuens DNA lain yang sudah diketahui. Teknik ini digunakan dalam riset dasar biologi maupun berbagai bidang terapan seperti kedokteran, bioteknologi, forensik, dan antropologi.

Baca : Hormon Bahagia

Sekuens DNA menyandikan informasi yang diperlukan bagi makhluk hidup untuk melangsungkan hidup dan berkembang biak. Dengan demikian, penentuan sekuens DNA berguna di dalam ilmu pengetahuan ‘murni’ mengenai mengapa dan bagaimana makhluk hidup dapat hidup, selain berguna dalam penerapan praktis. Karena DNA merupakan ciri kunci makhluk hidup, pengetahuan akan sekuens DNA dapat berguna dalam penelitian biologi manapun. Sebagai contoh, dalam ilmu pengobatan sekuensing DNA dapat digunakan untuk mengidentifikasi, mendiagnosis, dan mengembangkan pengobatan penyakit genetik. Demikian pula halnya, penelitian pada agen penyebab penyakit (patogen) dapat membuka jalan bagi pengobatan penyakit menular. Bioteknologi, yang dapat pula memanfaatkan sekuensing DNA, merupakan bidang yang berkembang pesat dan berpotensi menghasilkan banyak barang dan jasa berguna. Pengetahuan akan sekuens DNA berguna untuk mengetahui sekuens asam amino yang disandikan oleh gen.

Karena RNA dibentuk dengan transkripsi dari DNA, informasi yang dikandung RNA juga terdapat di dalam DNA cetakannya sehingga sekuensing DNA cetakan tersebut sudah cukup untuk membaca informasi pada RNA. Namun, sekuensing RNA dibutuhkan khususnya pada eukariota. hal itu dikarenakan molekul RNA eukariota tidak selalu sebanding dengan DNA cetakannya karena pemotongan intron setelah proses transkripsi.

Macam Metode

Metode Maxam-Gilbert

Metode ini mulanya cukup populer karena dapat langsung menggunakan DNA hasil pemurnian, sedangkan metode Sanger pada waktu itu memerlukan kloning untuk membentuk DNA untai tunggal. Seiring dengan dikembangkannya metode terminasi rantai, metode sekuensing Maxam-Gilbert menjadi tidak populer karena kerumitan teknisnya, digunakannya bahan kimia berbahaya, dan kesulitan dalam scale-up.

Pada metode ini fragmen-fragmen DNA yang akan disekuens harus dilabeli pada salah satu ujungnya, biasanya menggunakan fosfat radioaktif atau suatu nukleotida pada ujung 3’. Metode maxam-Gilbert dapat diterapkan baik untuk DNA untai ganda maupun DNA untai tunggal dan melibatkan pemotongan basa spesifik yang dilakukan dalam dua tahap. Molekul DNA terlebih dahulu dipotong-potong secara parsial menggunakan piperidin. pengaturan masa inkubasi atau konsentrasi piperidin akan menghasilkan fragmen-fragmen DNA yang bermacam-macam ukurannya. Selanjutnya, basa dimodifikasi menggunakan bahan-bahan kimia tertentu.

Dimetilsulfat (DMS) akan memetilasi basa G, asam format menyerang A dan G, hidrazin akan menghidrolisis C dan T, tetapi garam yang tinggi akan menghalangi reaksi T sehingga hanya bekerja pada C. Dengan demikian, akan dihasilkan empat macam fragmen, masing-masing dengan ujung G, ujung A atau G, ujung C atau T, dan ujung C. Dari hasil dapat diketahui sekuens fragmen DNA yang dipelajari atas dasar laju migrasi masing-masing pita.

Baca : Smartdust Penemuan yang tidak di sengaja

Lajur kedua berisi fragmen-fragmen yang salah satu ujungnya adalah A atau G. Untuk memastikannya harus dilihat pita-pita pada lajur pertama. Jika pada lajur kedua terdapat pita-pita yang posisi migrasinya sama dengan posisi migrasi pada lajur pertama, maka dapat dipastikan bahwa pita-pita tersebut merupakan fragmen yang salah satu ujungnya adalah G. Sisanya adalah pita-pita yang merupakan fragmen dengan basa A pada salah satu ujungnya. Cara yang sama dapat kita gunakan untuk memastikan pita-pita pada lajur ketiga, yaitu dengan membandingkannya dengan pita-pita pada lajur keempat.

Seperti halnya pada elektroforesis gel agarosa, laju migrasi pita menggambarkan ukuran fragmen. Makin kecil ukuran fragmen, makin cepat migrasinya. Dengan demikian, ukuran fragmen pada contoh tersebut di atas dapat diurutkan atas dasar laju/posisi migrasinya. Jadi, kalau diurutkan dari yang terkecil hingga yang terbesar, hasilnya adalah fragmen-fragmen dengan ujung TTGCCCCGCGTGGCGCAAAGG. Inilah sekuens fragmen DNA yang dipelajari.

Sekuensing DNASekuensing DNA

Metode Sanger

Gel sekuensing metode Sanger yang telah dilabel radioaktif.

Dewasa ini metode sekuensing Maxam-Gilbert sudah sangat jarang digunakan karena ada metode lain yang jauh lebih praktis. Metode tersebut yaitu metode dideoksi yang dikembangkan oleh A. Sanger dan kawan-kawan pada tahun 1977 juga.

Metode Sanger pada dasarnya memanfaatkan dua sifat salah satu subunit enzim DNA polimerase yang disebut fragmen klenow. Kedua sifat tersebut adalah kemampuannya untuk menyintesis DNA dengan adanya dNTP dan ketidakmampuannya untuk membedakan dNTP dengan ddNTP. Jika molekul dNTP hanya kehilangan gugus hidroksil (OH) pada atom C nomor 2 gula pentosa, molekul ddNTP atau dideoksi nukleotida juga mengalami kehilangan gugus OH pada atom C nomor 3 sehingga tidak dapat membentuk ikatan fosfodiester. Artinya, jika ddNTP disambungkan oleh fragmen klenow dengan suatu molekul DNA, maka polimerisasi lebih lanjut tidak akan terjadi atau terhenti. Basa yang terdapat pada ujung molekul DNA ini dengan sendirinya adalah basa yang dibawa oleh molekul ddNTP.

Dengan dasar pemikiran itu sekuensing DNA menggunakan metode dideoksi dilakukan pada empat reaksi yang terpisah. Keempat reaksi ini berisi dNTP sehingga polimerisasi DNA dapat berlangsung. Namun, pada masing-masing reaksi juga ditambahkan sedikit ddNTP sehingga kadang-kadang polimerisasi akan terhenti di tempat -tempat tertentu sesuai dengan ddNTP yang ditambahkan. Jadi, di dalam tiap reaksi akan dihasilkan sejumlah fragmen DNA yang ukurannya bervariasi tetapi ujung 3’nya selalu berakhir dengan basa yang sama. Sebagai contoh, dalam reaksi yang mengandung ddATP akan diperoleh fragmen-fragmen DNA dengan berbagai ukuran yang semuanya mempunyai basa A pada ujung 3’nya.

Baca : Bakteri Pengikat Nitrogen

Pada Gambar 13.2 diberikan sebuah contoh sekuensing sebuah fragmen DNA. Tabung ddATP menghasilkan dua fragmen dengan ukuran tiga dan tujuh basa; ddCTP menghasilkan tiga fragmen dengan ukuran satu, dua, dan empat basa; tabung ddGTP menghasilkan dua fragmen dengan ukuran lima dan sembilan basa; ddTTP menghasilkan dua fragmen dengan ukuran enam dan delapan basa. Di depan (arah 5’) tiap fragmen ini sebenarnya terdapat primer, yang berfungsi sebagai prekursor reaksi polimerisasi sekaligus untuk kontrol hasil sekuensing karena urutan basa primer telah diketahui.

Untuk melihat ukuran fragmen-fragmen hasil sekuensing tersebut dilakukan elektroforesis. Cara itu menggunakan gel poliakrilamid sehingga akan terjadi perbedaan migrasi sesuai dengan ukurannya masing-masing. Setelah ukurannya diketahui, dilakukan pengurutan fragmen mulai dari yang paling pendek hingga yang paling panjang, yaitu fragmen dengan ujung C (satu basa) hingga fragmen dengan ujung G (sembilan basa). Dengan demikian, hasil sekuensing yang diperoleh adalah CCACGTATG. Urutan basa DNA yang dicari adalah urutan yang komplementer dengan hasil sekuensing ini, yaitu GGTGCATAC.

Seiring dengan perkembangannya, kini terdapat beberapa macam metode sekuensing terminasi rantai yang berbeda satu sama lain terutama dalam hal pendeteksian fragmen DNA hasil reaksi sekuensing.

Metode Sanger asli

Pada metode yang asli, urutan nukleotida DNA tertentu dapat disimpulkan dengan membuat secara paralel empat reaksi perpanjangan rantai menggunakan salah satu dari empat jenis basa pemutus rantai pada masing-masing reaksi. Fragmen-fragmen DNA yang kemudian terbentuk dideteksi dengan menandai (labelling) primer yang digunakan dengan fosfor radioaktif sebelum reaksi sekuensing dilangsungkan. Keempat hasil reaksi tersebut kemudian dielektroforesis pada empat lajur yang saling bersebelahan pada gel poliakrilamida.

Hasil pengembangan metode ini menggunakan empat macam primer yang ditandai dengan pewarna berpendar (fluorescent dye). Hal ini memiliki kelebihan karena tidak menggunakan bahan radioaktif; selain menambah keamanan dan kecepatan, keempat hasil reaksi dapat dicampur dan dielektroforesis pada satu lajur pada gel. Metode ini dikenal sebagai metode dye primer sequencing.

Sekuensing dye terminator

Cara lain pelabelan primer adalah dengan melabel pemutus rantainya, lazim disebut metode sekuensing dye terminator. Keunggulan cara ini adalah bahwa seluruh proses sekuensing dapat dilakukan dalam satu reaksi, dibandingkan dengan empat reaksi terpisah yang diperlukan pada penggunaan primer berlabel. Pada cara tersebut, masing-masing dideoksinukleotida pemutus rantai ditandai dengan pewarna fluoresens, yang berpendar pada panjang gelombang yang berbeda-beda. Cara ini lebih mudah dan lebih cepat dibandingkan penggunaan primer berwarna. Namun dapat menimbulkan ketidaksamaan tinggi kurva atau puncak (peak) yang disebabkan oleh ketidaksamaan penggabungan pemutus rantai berwarna berukuran besar pada pertumbuhan DNA (ketidaksamaan tersebut bergantung pada DNA cetakan). Masalah tersebut telah dapat dikurangi secara nyata dengan penggunaan macam-macam enzim dan pewarna baru yang meminimalkan perbedaan dalam penggabungan.

Metode ini kini digunakan pada sebagian besar usaha reaksi sekuensing karena lebih sederhana dan lebih murah. Primer-primer yang digunakan tidak perlu dilabel secara terpisah (yang bisa jadi cukup mahal untuk primer yang dibuat untuk sekali pakai), walaupun hal tersebut tidak terlalu bermasalah dalam penggunaan universal primer.

Automatisasi dan penyiapan sampel

Mesin sekuensing DNA automatis modern mampu mengurutkan 384 sampel berlabel fluoresens sekaligus dalam sekali batch (elektroforesis) yang dapat dilakukan sampai 24 kali sehari. Hal tersebut hanya mencakup proses pemisahan dan proses pembacaan kurva; reaksi sekuensing, pembersihan, dan pelarutan ulang dalam larutan penyangga yang sesuai harus dilakukan secara terpisah.

Untuk memperoleh hasil reaksi berlabel yang dapat dideteksi dari DNA cetakan, metode “sekuensing daur” (cycle sequencing) paling lazim dilakukan. Dalam metode ini dilakukan berturut-turut penempelan primer (primer annealing), ekstensi oleh polimerase DNA, dan denaturasi (peleburan atau melting) untai-untai DNA cetakan secara berulang-ulang (25–40 putaran). Kelebihan utama sekuensing daur adalah lebih efisiennya penggunaan pereaksi sekuensing yang mahal (BigDye) dan mampunya mengurutkan templat dengan struktur sekunder tertentu seperti hairpin loop atau daerah kaya-GC. Setiap tahap pada sekuensing daur ditempuh dengan mengubah temperatur reaksi menggunakan mesin pendaur panas (thermal cycler) PCR.

Cara tersebut didasarkan pada fakta bahwa dua untai DNA yang komplementer akan saling menempel (berhibridisasi) pada temperatur rendah dan berpisah (terdenaturasi) pada temperatur tinggi. Hal penting lain yang memungkinkan cara tersebut adalah penggunaan enzim DNA polimerase dari organisme termofilik (organisme yang hidup di lingkungan bertemperatur tinggi), yang tidak mudah terurai pada temperatur tinggi yang digunakan pada cara tersebut (>95 °C).

Sekuensing generasi berikutnya

Pyrosequencing

Pyrosequencing adalah teknik pemetaan DNA yang berdasarkan deteksi terhadap pirofosfat (PPi) yang dilepaskan selama sintesis DNA. Teknik ini memanfaatkan reaksi enzimatik yang dikatalisis oleh ATP sulfurilase dan luciferase untuk pirofosfat inorganik yang dilepaskan selama penambahan nukleotida.

Sekuensing DNA skala besar

Dalam metode sekuensing DNA yang kini ada hanya dapat merunut sepotong pendek DNA sekaligus. Contohnya, mesin sekuensing modern yang menggunakan metode Sanger hanya dapat mencakup paling banyak sekitar 1000 pasang basa setiap sekuensing. Keterbatasan ini disebabkan oleh probabilitas terminasi rantai yang menurun secara geometris seiring dengan bertambahnya panjang rantai, selain keterbatasan fisik ukuran dan resolusi gel.

Sekuens DNA dengan ukuran jauh lebih besar kerap kali dibutuhkan. Sebagai contoh, genom bakteri sederhana dapat mengandung jutaan pasang basa, sedangkan genom manusia terdiri atas lebih dari 3 milyar pasang basa. Berbagai strategi telah dikembangkan untuk sekuensing DNA skala besar, termasuk strategi primer walking dan shotgun sequencing. Kedua strategi tersebut melibatkan pembacaan banyak bagian DNA dengan metode Sanger. Selanjutnya menyusun hasil pembacaan tersebut menjadi sekuens yang runut. Masing-masing strategi memiliki kelemahan sendiri dalam hal kecepatan dan ketepatan; sebagai contoh, metode shotgun sequencing merupakan metode yang paling praktis untuk sekuensing genom ukuran besar, namun proses penyusunannya rumit dan rentan kesalahan.

Baca : Mengukur Konsentrasi DNA

Data sekuens bermutu tinggi lebih mudah didapatkan bila DNA bersangkutan dimurnikan dari pencemar yang mungkin terdapat pada sampel dan diamplifikasi. Hal ini dapat dilakukan dengan metode reaksi berantai polimerase. Bila primer yang dibutuhkan untuk mencakup seluruh daerah yang diinginkan cukup praktis dibuat. Cara lainnya adalah dengan kloning DNA sampel. Cara ini menggunakan vektor bakteri, yaitu memanfaatkan bakteri untuk “menumbuhkan” salinan DNA yang diinginkan sebanyak beberapa ribu pasang basa sekaligus. Biasanya proyek-proyek sekuensing DNA skala besar memiliki persediaan pustaka hasil kloning semacam itu.

Penutup

Dalam genetika dan biokimia, sekuensing berarti penentuan struktur primer (atau sekuens primer) rantai biopolimer tak bercabang. Sekuensing menghasilkan penggambaran linear simbolik yang disebut sekuens yang meringkas sebagian besar struktur tingkat atom atas molekul yang di-sekuensing. Sebagai contoh, sekuensing DNA akan menghasilkan sekuens DNA yang digambarkan sebagai untaian abjad lambang nukleotida-nukleotida penyusun DNA, yaitu “A” (nukleotida berbasa adenin), “T” (nukleotida berbasa timin), “G” (nukleotida berbasa guanin), dan “C” (nukleotida berbasa sitosin).

Metode sekuensing DNA meliputi Maxam-Gilbert, Sanger, dye primer sequencing, dan dye terminator.

Baca Juga :

Bioteknologi sebagai solusi bahan bakar
Sejauh Mana Perkembangan Terapi Stem Cell di Indonesia?
Diagnosa Kanker Payudara